Pertemuan 6
Itesa Muhammadiyah
ASE 4335 - Ganjil
2025-04-23
Model statistik untuk menjelaskan pengaruh antara satu variabel independen (X) dan satu variabel dependen (Y).
Persamaan model:
\[ Y = \beta_0 + \beta_1 X_1 \]
Mencari nilai \(\hat{\beta}_0\) dan \(\hat{\beta}_1\) yang meminimalkan jumlah kuadrat selisih (residual) antara nilai aktual dan prediksi:
\[ \min \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 \]
\[ \hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \]
\[ \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \]
Misal data:
| X (Jam Belajar) | Y (Nilai Ujian) |
|---|---|
| 2 | 65 |
| 3 | 70 |
| 5 | 75 |
| 7 | 85 |
| 9 | 95 |
Gunakan:
\[ \hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \]
Hitung:
| X | Y | \(X_i - \bar{X}\) | \(Y_i - \bar{Y}\) | \((X_i - \bar{X})(Y_i - \bar{Y})\) | \((X_i - \bar{X})^2\) |
|---|---|---|---|---|---|
| 2 | 65 | -3.2 | -13 | 41.6 | 10.24 |
| 3 | 70 | -2.2 | -8 | 17.6 | 4.84 |
| 5 | 75 | -0.2 | -3 | 0.6 | 0.04 |
| 7 | 85 | 1.8 | 7 | 12.6 | 3.24 |
| 9 | 95 | 3.8 | 17 | 64.6 | 14.44 |
\[ \hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \]
\[ \hat{\beta}_1 = \frac{137}{32.8} = 4.18 \]
\[ \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 78 - (4.18)(5.2) = 56.26 \]
\[ \hat{Y} = 56.26 + 4.18 X \]
Misal ingin prediksi nilai ujian jika belajar 6 jam:
\[ \hat{Y} = 56.26 + 4.18(6) = 81.34 \]
Call:
lm(formula = Y ~ X, data = data)
Residuals:
1 2 3 4 5
0.3659 1.1890 -2.1646 -0.5183 1.1280
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.2805 1.6293 34.54 5.33e-05 ***
X 4.1768 0.2811 14.86 0.000661 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.61 on 3 degrees of freedom
Multiple R-squared: 0.9866, Adjusted R-squared: 0.9821
F-statistic: 220.8 on 1 and 3 DF, p-value: 0.0006613